odoo_17.0.1/odoo/tools/populate.py

182 lines
7.9 KiB
Python

import random
from datetime import datetime
from dateutil.relativedelta import relativedelta
from odoo.tools import pycompat
def Random(seed):
""" Return a random number generator object with the given seed. """
r = random.Random()
r.seed(seed, version=2)
return r
def format_str(val, counter, values):
""" Format the given value (with method ``format``) when it is a string. """
if isinstance(val, str):
return val.format(counter=counter, values=values)
return val
def chain_factories(field_factories, model_name):
""" Instantiate a generator by calling all the field factories. """
generator = root_factory()
for (fname, field_factory) in field_factories:
generator = field_factory(generator, fname, model_name)
return generator
def root_factory():
""" Return a generator with empty values dictionaries (except for the flag ``__complete``). """
yield {'__complete': False}
while True:
yield {'__complete': True}
def randomize(vals, weights=None, seed=False, formatter=format_str, counter_offset=0):
""" Return a factory for an iterator of values dicts with pseudo-randomly
chosen values (among ``vals``) for a field.
:param list vals: list in which a value will be chosen, depending on `weights`
:param list weights: list of probabilistic weights
:param seed: optional initialization of the random number generator
:param function formatter: (val, counter, values) --> formatted_value
:param int counter_offset:
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def generate(iterator, field_name, model_name):
r = Random('%s+field+%s' % (model_name, seed or field_name))
for counter, values in enumerate(iterator):
val = r.choices(vals, weights)[0]
values[field_name] = formatter(val, counter + counter_offset, values)
yield values
return generate
def cartesian(vals, weights=None, seed=False, formatter=format_str, then=None):
""" Return a factory for an iterator of values dicts that combines all ``vals`` for
the field with the other field values in input.
:param list vals: list in which a value will be chosen, depending on `weights`
:param list weights: list of probabilistic weights
:param seed: optional initialization of the random number generator
:param function formatter: (val, counter, values) --> formatted_value
:param function then: if defined, factory used when vals has been consumed.
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def generate(iterator, field_name, model_name):
counter = 0
for values in iterator:
if values['__complete']:
break # will consume and lose an element, (complete so a filling element). If it is a problem, use peekable instead.
for val in vals:
yield {**values, field_name: formatter(val, counter, values)}
counter += 1
factory = then or randomize(vals, weights, seed, formatter, counter)
yield from factory(iterator, field_name, model_name)
return generate
def iterate(vals, weights=None, seed=False, formatter=format_str, then=None):
""" Return a factory for an iterator of values dicts that picks a value among ``vals``
for each input. Once all ``vals`` have been used once, resume as ``then`` or as a
``randomize`` generator.
:param list vals: list in which a value will be chosen, depending on `weights`
:param list weights: list of probabilistic weights
:param seed: optional initialization of the random number generator
:param function formatter: (val, counter, values) --> formatted_value
:param function then: if defined, factory used when vals has been consumed.
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def generate(iterator, field_name, model_name):
counter = 0
for val in vals: # iteratable order is important, shortest first
values = next(iterator)
values[field_name] = formatter(val, counter, values)
values['__complete'] = False
yield values
counter += 1
factory = then or randomize(vals, weights, seed, formatter, counter)
yield from factory(iterator, field_name, model_name)
return generate
def constant(val, formatter=format_str):
""" Return a factory for an iterator of values dicts that sets the field
to the given value in each input dict.
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def generate(iterator, field_name, _):
for counter, values in enumerate(iterator):
values[field_name] = formatter(val, counter, values)
yield values
return generate
def compute(function, seed=None):
""" Return a factory for an iterator of values dicts that computes the field value
as ``function(values, counter, random)``, where ``values`` is the other field values,
``counter`` is an integer, and ``random`` is a pseudo-random number generator.
:param callable function: (values, counter, random) --> field_values
:param seed: optional initialization of the random number generator
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def generate(iterator, field_name, model_name):
r = Random('%s+field+%s' % (model_name, seed or field_name))
for counter, values in enumerate(iterator):
val = function(values=values, counter=counter, random=r)
values[field_name] = val
yield values
return generate
def randint(a, b, seed=None):
""" Return a factory for an iterator of values dicts that sets the field
to a random integer between a and b included in each input dict.
:param int a: minimal random value
:param int b: maximal random value
:param int seed:
:returns: function of the form (iterator, field_name, model_name) -> values
:rtype: function (iterator, str, str) -> dict
"""
def get_rand_int(random=None, **kwargs):
return random.randint(a, b)
return compute(get_rand_int, seed=seed)
def randfloat(a, b, seed=None):
""" Return a factory for an iterator of values dicts that sets the field
to a random float between a and b included in each input dict.
"""
def get_rand_float(random=None, **kwargs):
return random.uniform(a, b)
return compute(get_rand_float, seed=seed)
def randdatetime(*, base_date=None, relative_before=None, relative_after=None, seed=None):
""" Return a factory for an iterator of values dicts that sets the field
to a random datetime between relative_before and relative_after, relatively to
base_date
:param datetime base_date: override the default base date if needed.
:param relativedelta|timedelta relative_after: range up which we can go after the
base date. If not set, defaults to 0, i.e. only in the past of reference.
:param relativedelta|timedelta relative_before: range up which we can go before the
base date. If not set, defaults to 0, i.e. only in the future of reference.
:param seed:
:return: iterator for random dates inside the defined range
"""
base_date = base_date or datetime(2020, 1, 1)
seconds_before = relative_before and ((base_date + relative_before) - base_date).total_seconds() or 0
seconds_after = relative_after and ((base_date + relative_after) - base_date).total_seconds() or 0
def get_rand_datetime(random=None, **kwargs):
return base_date + relativedelta(seconds=random.randint(int(seconds_before), int(seconds_after)))
return compute(get_rand_datetime, seed=seed)